3,178 research outputs found

    Quenching and Tomography from RHIC to LHC

    Full text link
    We compare fully perturbative and fully nonperturbative pictures of high-pT energy loss calculations to the first results from LHC. While over-suppressed compared to published ALICE data, parameter-free pQCD predictions based on the WHDG energy loss model constrained to RHIC data simultaneously describe well the preliminary CMS hadron suppression, ATLAS charged hadron v2, and ALICE D meson suppression; we also provide for future reference WHDG predictions for B meson RAA. However, energy loss calculations based on AdS/CFT also qualitatively describe well the RHIC pion and non-photonic electron suppression and LHC charged hadron suppression. We propose the double ratio of charm to bottom quark RAA will qualitatively distinguish between these two energy loss pictures.Comment: 4 pages, 3 figures. Proceedings for Quark Matter 201

    Timing of births and oral contraceptive use influences ovarian cancer risk

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139076/1/ijc30910_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139076/2/ijc30910.pd

    Manipulating the ABCs of self-assembly via low-χ block polymer design

    Get PDF
    Block polymer self-assembly typically translates molecular chain connectivity into mesoscale structure by exploiting incompatible blocks with large interaction parameters (χ_ij). In this article, we demonstrate that the converse approach, encoding low-χ interactions in ABC bottlebrush triblock terpolymers (χ_(AC) ≲ 0), promotes organization into a unique mixed-domain lamellar morphology, which we designate LAM_P. Transmission electron microscopy indicates that LAM_P exhibits ACBC domain connectivity, in contrast to conventional three-domain lamellae (LAM_3) with ABCB periods. Complementary small-angle X-ray scattering experiments reveal a strongly decreasing domain spacing with increasing total molar mass. Self-consistent field theory reinforces these observations and predicts that LAM_P is thermodynamically stable below a critical χ_(AC), above which LAM_3 emerges. Both experiments and theory expose close analogies to ABA′ triblock copolymer phase behavior, collectively suggesting that low-χ interactions between chemically similar or distinct blocks intimately influence self-assembly. These conclusions provide fresh opportunities for block polymer design with potential consequences spanning all self-assembling soft materials

    Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean

    Get PDF
    Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for . 70 years in the United States and Canada, consisting of 20–50 entries each year at 10–20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement

    A multi-institutional study evaluating and describing atypical parathyroid tumors discovered after parathyroidectomy

    Get PDF
    Objective: To describe common intraoperative and pathologic findings of atypical parathyroid tumors (APTs) and evaluate clinical outcomes in patients undergoing parathyroidectomy. Methods: In this multi-institutional retrospective case series, data were collected from patients who underwent parathyroidectomy from 2000 to 2018 from three tertiary care institutions. APTs were defined according to the AJCC eighth edition guidelines and retrospective chart review was performed to evaluate the incidence of recurrent laryngeal nerve injury, recurrence of disease, and disease-specific mortality. Results: Twenty-eight patients were identified with a histopathologic diagnosis of atypical tumor. Mean age was 56 years (range, 23-83) and 68% (19/28) were female. All patients had an initial diagnosis of primary hyperparathyroidism with 21% (6/28) exhibiting clinical loss of bone density and 32% (9/28) presenting with nephrolithiasis or renal dysfunction. Intraoperatively, 29% (8/28) required thyroid lobectomy, 29% (8/28) had gross adherence to adjacent structures and 46% (13/28) had RLN adherence. The most common pathologic finding was fibrosis 46% (13/28). Postoperative complications include RLN paresis/paralysis in 14% (4/28) and hungry bone syndrome in 7% (2/28). No patients with a diagnosis of atypical tumor developed recurrent disease, however there was one patient that had persistent disease and hypercalcemia that is being observed. There were 96% (27/28) patients alive at last follow-up, with one death unrelated to disease. Conclusion: Despite the new AJCC categorization of atypical tumors staged as Tis, we observed no recurrence of disease after resection and no disease-specific mortality. However, patients with atypical tumors may be at increased risk for recurrent laryngeal nerve injury and incomplete resection

    Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies

    Get PDF
    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing developmen

    An [Fe<sup>III</sup><sub>30</sub>] molecular metal oxide

    Get PDF
    Dearle AE, Cutler DJ, Coletta M, et al. An [FeIII30] molecular metal oxide. Chemical Communications. 2021.Dissolution of FeBr3 in a mixture of acetonitrile and 3,4-lutidine in the presence of an amine results in the formation of an [Fe30] molecular metal oxide containing alternating layers of tetrahedral and octahedral FeIII ions. Mass spectrometry suggests the cluster is formed quickly and remains stable in solution, while magnetic measurements and DFT calculations reveal competing antiferromagnetic exchange interactions

    Protecting healing relationships in the age of electronic health records: report from an international conference

    Get PDF
    We present findings of an international conference of diverse participants exploring the influence of electronic health records (EHRs) on the patient-practitioner relationship. Attendees united around a belief in the primacy of this relationship and the importance of undistracted attention. They explored administrative, regulatory, and financial requirements that have guided United States (US) EHR design and challenged patient-care documentation, usability, user satisfaction, interconnectivity, and data sharing. The United States experience was contrasted with those of other nations, many of which have prioritized patient-care documentation rather than billing requirements and experienced high user satisfaction. Conference participants examined educational methods to teach diverse learners effective patient-centered EHR use, including alternative models of care delivery and documentation, and explored novel ways to involve patients as healthcare partners like health-data uploading, chart co-creation, shared practitioner notes, applications, and telehealth. Future best practices must preserve human relationships, while building an effective patient-practitioner (or team)-EHR triad

    Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains

    Get PDF
    The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel ``meta-polycentric'' functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function
    • …
    corecore